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Multiple scattering corrections in small-angle neutron scattering experiments on polymers have been 
examined. Numerical calculations show that, for typical experimental conditions, the second-order 
scattering is less than 2% of the first-order scattering for QRg up to 10.0. An approximate expression is 
also given for obtaining a rough estimate of the second-order scattering without numerical calculation. 
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I N T R O D U C T I O N  

Small-angle neutron scattering (SANS) measurements on 
samples consisting of mixtures of normal and deuterated 
polymers have been used for a decade to study the 
configuration of polymer chains in bulk 1-6 and in 
concentrated solutions ~'v. The measured distributions in 
these experiments contain a finite contribution from 
neutrons which have suffered more than one scattering 
event in the sample. However, the effect of the multiply 
scattered neutrons have not been taken into account in 
published studies on polymer samples. It has not been 
certain whether these corrections are indeed small, 
particularly in experiments using the high concentration 
tagging technique 3-5. In this paper, we report a 
calculation for the relative magnitudes of the second- 
order and the first-order scattering in SANS 
measurements on polymers. 

The general problem of multiple scattering in neutron 
experiments was formulated by Vineyard s in 1954. This 
treatment has been used for calculating higher-order 
scattering events in wide-angle neutron scattering 
experiments 9-12. To calculate multiple scattering effects 
in SANS experiments, Schelten and Schmatz 13 suggested 
a somewhat different procedure, which involves 
numerical evaluation of the Fourier transforms of the 
scattering functions. This was used for neutron scattering 
from spheres ~3 where the coherent scattering function 
Ecoh(Q) varies rapidly (Q - 4) at large wavevector transfer Q. 
We have found that in the case of polymer chains, where 
2cob(Q) varies as Q-2 at large Q, the Fourier transform 
method results in significant truncation errors for 
practical limits of integration. We have, therefore, used 
Vineyard's formulation for the present calculations. The 
theory of the method is given in the next section. Results 
and discussion of the calculations are given in the third 
section. The fourth section gives an analytical expression 
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for obtaining a crude estimate of the second-order 
scattering. We summarize these results in the final section. 

THEORY 

We consider neutron scattering from an infinite slab of 
thickness t. A well collimated beam of neutrons of 
wavevector k o and a uniform current density I o neutrons 
per square centimetre per second per steradian is incident 
along the normal to the flat surface of the sample, k is the 
wavevector of the neutrons that emerge from the sample 
and proceed towards the detector, k makes an angle 0 with 
the slab normal as shown in Figure 1. In general, the 
neutrons might be scattered in the specimen several times 
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Figure 1 
k and the slab normal are in 4)=0 plane. Direction of k' is given 
by polar angles (0', qY) 

Scattering geometry for the two scattering situation, ko, 
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before they emerge. In the following, we obtain the 
expression for the second-order scattered neutron current 
I2(Q) as a function of the wavevector transfer Q( = k o -  k) 
using an approach similar to that developed by Vineyard 8 
and later workers 9- ~ 2 

Let us assume that the two scattering events occur at A 
and B respectively (Figure I). The incident neutron is first 
elastically scattered at A and proceeds along k'. It suffers a 
second elastic scattering at B and emerges from the 
sample in the direction ofk. To describe the trajectory of 
the neutron, we use a spherical coordinate system with its 
pole along the inward slab normal. The polar angles (0', 
~b') and (0, q~) give the directions of k' and k respectively. 
We assume that the incident beam is well collimated such 
that k o has angles (0, 0). We assume I2(Q) along (0, ~b) to be 
independent of the azimuthal angle ~b. It is thus 
convenient to choose k o, k and the slab normal to be 
coplanar and to measure the azimuthal angle ~b from this 
plane. That is, we assume ~b = 0. If A and B are situated at 
depths z 1 and z 2 from the flat surface of the sample and if 
one assumes that both of the scatterings are forwards (0, 0' 
<7r/2), then it can be shown 8'12 that 

I z (Q)=Io f  dO'sinO' do'  dz~ secO'e ~':,Z(O') ) 

0 0 0 

t 
x f dz2secOe 'u(zz-zOsecO'~(/3) e-lt(t-z)secO I 

zl 
(1) 

In SANS experiments on polymers, neutron scattering 
is dominated by SACS events. In general, there may also 
be a small contribution to Y.(0) from incoherent 
scattering; we discuss this effect in the next section. For 
the present, we assume Y'(0)=Y~oh(0) only. This is 
determined by the configuration of the polymer chain and 
by the overall density fluctuations in the sample 3. 

CALCULATION DETAILS AND RESULTS 

It has been seen from equation (3) that, to calculate the 
second-order scattering corrections, one has to know 
E~oh(0), the quantity one wants to measure. In principle, 
one can obtain Ecoh(0 ) and 12(Q) from the measured 
distribution using an iterative procedure if the higher- 
order scatterings are negligible. This requires a knowledge 
of Zcoh(0) over a large region of 0. In general, the measured 
distributions are not accurate at large 0. In view of this, we 
calculate instead the relative magnitudes of I2(Q) and 
I1 (Q) using a model for the scattering function Z~oh(0). For 
the present purpose, we shall assume the polymer chains 
to be Gaussian (Debye model~4). The effect of the density 
fluctuations on Z~oh(0) is normally small for bulk 
amorphous polymers, particularly for bulk polystyrene4; 
and we neglect this contribution. Then for a mixture of 
normal and deuterated polymer, it can be shown 3 that 

2C 
Eco,(O) = - ~ ( p  - 1 + e- v) p -  (7) 

where 

Here # is the attenuation coefficient which includes 
absorption and all scattering processes including small- 
angle coherent scattering (SACS). E(0) is the macroscopic 
differential scattering cross-section for the neutrons to be 
scattered through an angle 0. In the present problem, the 
scattering angle at first scattering is 0' and that at second 
scattering is/3 such that 

cos/3 =cos 0' cos 0 -  sin 0' sin 0 cos ~b' (2) 

Equation (1) can be simplified to obtain 

r~/2 rr 

I2(Q)=2loe-Utf Z(O')f2(O,O')sin O'dO' f E(3)d# 

0 

where 

(3) 

sec0sec0' {e -''l'~c°'-lj-1 e-"'t'¢c°-ll-l'~ 
fz(0'0')- l,(sec 0' - sec 0)~ ~ 7 ) -  /,(se~ 0 ~ 1) (]4) 

It can be shown in a similar way that the first-order 
current 11 (Q) emerging from the sample in the direction of 
k is given by 

where 

I,(Q) = loe-UtE(O)f~(O) (5) 

sec 0(1 - e ,,~c0- i) 
f~(0) = (6) 

~(sec 0 -  1) 

C = (a, - ao)2Nn2z(1 - Z) 

and 

p = ( 2k o sin ½0) Z R 2 = Q 2 Re2 

Here R o is the radius of gyration for the polymer chain, a .  
and aD are the coherent scattering lengths per protonated 
and deuterated monomer respectively. N is the number of 
polymer chains per unit volume of the sample and n is the 
number of monomers in each chain. Z is the number 
fraction of monomers that are deuterated in the sample. 
We use this model for all coherent elastic scattering 
events. While equation (7) is incorrect for large Q, and 
hence large scattering angles, the error is made negligible 
by the rapid reduction in Zcoh(0) as 0 increases. 

The first- and second-order scatterings 11 (Q) and I2(Q) 
have been numerically computed using equations (3)-(7) 
for bulk polystyrene samples of molecular weight Mw 
=194000, t=0.12 cm and Z=0.3 corresponding to 
typical high concentration sample conditions 4. R o for a 
polystyrene chain of molecular weight M w is equal to 
M~/2 times a well established constant z'4'6. That is 

R o = 0.267M~/2 

k o was taken to be 1.323 A -1. The integrations in 
equation (3) were carried out numerically on the 0' range 
[0, 0'm,x] and simultaneously in the ~b' range [0,~z]. The 
restriction on 0m,x shortens the computation time and 
introduces only an insignificant error because Ecoh(0') 
becomes negligibly small at large angles. Calculations for 
I2(Q) have been made for 0m~x varying from 7z/25 up to 
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Scattered neutron intensi ty versus Q for  the Debye Figure 2 

chains. The upper and lower fu l l  curves are numerical ly calculated 
11 (Q) and 12(Q) using Vineyard's method as discussed in the tex t .  
The broken curve is the total scattering I(Q) calculated using the 
method of Schelten and Schmatz 

n/lO and show constant results within 2~o. The results 
shown in Figure 2 correspond to 0",~,x = n/15. In this figure, 
the upper and lower full curves correspond to I~ (Q) and 
I2(Q) respectively (note a factor 1/100 for Iz(Q)). This 
gives a ratio of I2(Q)/I l (Q) in the range of about 0.28 to 
1.2~o. In view of this result, the third-order scattering is 
expected to be negligible 8. 

In these calculations, we have assumed the neutron 
scattering to be purely coherent. Incoherent scattering is 
not negligible for a sample consisting of a mixture of 
normal and deuterated polymers. While Ecoh(0 ) decreases 
with increase in 0, the incoherent scattering cross-section 
2m~(0) remains approximately constant. For the 
experimental situation under discussion, Z~,~(01/E~,,h(0 ) 
~- 0.005 in the forward direction and Em~(0 ) is larger than 
Z~,,h(0) for O>n/15. In view of this, one expects the total 
second-order scattering I'2(Q) to consist of three parts 
I~(Q), lb(Q) and bz(Q) arising from three types of 
scattering events: (a) two coherent scattering events, (b) 
one coherent and one incoherent scattering event, and (c) 
two incoherent scattering events. The second-order 
scattering curve shown in Fiyure 2 corresponds to P2(Q). 
Calculations similar to the one described above were 
carried out using 

•(0) = 2coh(0 ) + Zinc(0) 

present calculations is ignored. We assume I~(Q)= 
I~2(Q) = I2(Q). It is seen that multiple scattering corrections 
are quite small. The radius of gyration Rg obtained from 
the uncorrected data is expected to be accurate to 15o. 

It should be noted that if the same problem is tested 
using the method of Schelten and Schmatz ~ 3, the second- 
order scattering term I2(Q) is comparable to within 5~o of 
that shown in Figure 2. However, the total scattering 

I(Q)= ~ I.(Q) 
n=l  

is significantly different as shown by the broken curve of 
Figure 2 and leads to an apparent change in Rg of about 
10~o. This is because I(Q) suffers from large truncation 
errors even when the limits of integration in the numerical 
evaluation of the Fourier transforms were taken to be 1.5 
times larger than those used by Schelten and Schmatz. 
Oscillations in the calculated I(Q) were also seen. We 
believe this is because of the slow (Q - 2) decrease in Zc,,h(Q) 
with Q for the polymer chains. The Schelten and Schmatz 
calculation is for spheres and because of the Q-4 
dependence does not suffer from truncation errors. 

ANALYTICAL EXPRESSION FOR SECOND- 
ORDER SCATTERING 

An analytical expression for the second-order scattering 
Iz(Q) has been obtained following the treatment of 
Schelten and Schmatz but approximating the true form of 
2~,,h(Q) by a Lorentzian function of the form 

C 
E~.o),(Q)- 1 + QZR,2,3 (8) 

This is a reasonable approximation to the Debye equation 
(7). Schelten and Schmatz showed that 

l,(Q)=2n Jo(Qr)h,(r)rdr 
0 

(9) 

where 

h , ,  , ,  . t r )= . )  / ,_2 / e ~- 
,7. \Ko / 

and Jo(Qr) is a Bessel function of zero order, s(r) in the 
above expression is given by 

s(r) = 2n f Jo(Qr)Z.,h(Q)t Q dQ 
0 

(10) 

These calculations gave a second-order intensity which 
was about 5~o larger than that shown in Figure 2. We 
believe this extra intensity corresponds to Ibz(Q). We need 
not calculate Fz(Q) as it is removed by the experimental 
procedure of subtracting the scattering from a control 
sample from the total scattering of the marked sample. 
This approximately corrects the data for multiple 
incoherent scattering also. In view of the above 
discussion, the effect of the incoherent scattering on the 

Using equations (8), (9) and (10), it can be shown that 

where 

I (Q) 9gl°C2t2e-"' 
2 - -  R 2 k 2  F ( Q g g }  

1 _((12+p)'/2+p'/2~ 
F(QRg)=F(p)=p,/Z(12 + p),/2 l " ~ , ~ ~ p T / ~  j 
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Figure 3 12 (Q)/I 1 (Q) as a function of QRg. For the full curve, 
/ 2 {Q) is that for the Debye chains and was obtained numerically 
using equation (3). For the broken curve, / 2 (Q} was obtained from 
the analytical expression (1 1 ). For both curves / z {Q) was obtained 
using equation (7) (Debye model} 

A compar ison  of  this expression* with the numerical 
results of the previous section is shown in Figure 3 for Mw 
=106 . The broken and full curves correspond to 
analytical and numerical results, respectively. Here, 
instead of I2(Q), we have plotted I2(Q)/I  1 (Q) as a function 
of  QRg- -and  have used the same I l (Q)  (equation (7)) for 
both the curves. It is seen that compared  to the numerical 
results equation (11) gives 25 to 9 0 ~  higher I2(Q). The 
curve is also valid for lower molecular weights and can be 
used for estimating the relative magnitudes of  the second- 
and first-order scatterings for polymer samples. 

S U M M A R Y  

The relative magnitudes of the second-order and the first- 
order  scatterings in SANS experiments on mixtures of 

* Equation (11) gives 12(Q) identical to the one obtained numerically 
using equation (3) with a Lorentzian function for ~c,,h(Q). 

S. Goyal e t  al.  

normal  and deuterated polymers have been calculated 
numerically using Vineyard's  method. The calculations 
for 0.12 cm thick samples of bulk polystyrene, containing 
30~o deuterated chains, show that the second-order 
scattering is less than 2 ~  of the first-order scattering up to 
QRg = 10.0. The second-order scattering is expected to be 
smaller when the concentra t ion of  the tagged chains is 
smaller. Consequently,  we believe that the multiple 
scattering correct ions in SANS experiments on polymers 
are normally quite small. 

An approximate  expression for obtaining the second- 
order  scattering is also given. A compar ison of this 
expression with the numerical results shows that it 
overestimates the second-order scattering. This 
expression may be considered a conservative upper limit 
of  the second-order scattering in SANS experiments on 
polymers and does not  require numerical calculation. 
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